Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Clin Microbiol Infect ; 2023 Apr 28.
Article in English | MEDLINE | ID: covidwho-2299659

ABSTRACT

BACKGROUND: Pandemic preparedness is critical to respond effectively to existing and emerging/new viral pathogens. Important lessons have been learned during the last pandemic at various levels. This revision discusses some of the major challenges and potential ways to address them in the likely event of future pandemics. OBJECTIVES: To identify critical points of readiness that may help us accelerate the response to future pandemics from a clinical microbiology laboratory perspective with a focus on viral diagnostics and genomic sequencing. The potential areas of improvement identified are discussed from the sample collection to information reporting. SOURCES: Microbiologists and researchers from five countries reflect on challenges encountered during the COVID-19 pandemic, review published literature on prior and current pandemics, and suggest potential solutions in preparation for future outbreaks. CONTENT: Major challenges identified in the pre-analytic and post-analytic phases from sample collection to result reporting are discussed. From the perspective of clinical microbiology laboratories, the preparedness for a new pandemic should focus on zoonotic viruses. Laboratory readiness for scalability is critical and should include elements related to material procurement, training personnel, specific funding programmes, and regulatory issues to rapidly implement "in-house" tests. Laboratories across various countries should establish (or re-use) operational networks to communicate to respond effectively, ensuring the presence of agile circuits with full traceability of samples. IMPLICATIONS: Laboratory preparedness is paramount to respond effectively to emerging and re-emerging viral infections and to limit the clinical and societal impact of new potential pandemics. Agile and fully traceable methods for sample collection to report are the cornerstone of a successful response. Expert group communication and early involvement of information technology personnel are critical for preparedness. A specific budget for pandemic preparedness should be ring-fenced and added to the national health budgets.

2.
iScience ; 26(3): 106230, 2023 Mar 17.
Article in English | MEDLINE | ID: covidwho-2239960

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to evolve and infect individuals. The exterior surface of the SARS-CoV-2 virion is dominated by the spike protein, and the current work examined spike protein biochemical features that have changed during the 3 years in which SARS-CoV-2 has infected humans. Our analysis identified a striking change in spike protein charge, from -8.3 in the original Lineage A and B viruses to -1.26 in most of the current Omicron viruses. We conclude that in addition to immune selection pressure, the evolution of SARS-CoV-2 has also altered viral spike protein biochemical properties, which may influence virion survival and promote transmission. Future vaccine and therapeutic development should also exploit and target these biochemical properties.

3.
Emerg Infect Dis ; 29(1): 224-226, 2023 01.
Article in English | MEDLINE | ID: covidwho-2233527

ABSTRACT

We describe a cluster of COVID-19 breakthrough infections after vaccination in Kyamulibwa, Kalungu District, Uganda. All but 1 infection were from SARS-CoV-2 Omicron strain BA.5.2.1. We identified 6 distinct genotypes by genome sequencing. Infections were mild, suggesting vaccination is not protective against infection but may limit disease severity.


Subject(s)
COVID-19 , Humans , COVID-19/epidemiology , COVID-19/prevention & control , SARS-CoV-2/genetics , Uganda/epidemiology , Breakthrough Infections
4.
Microbiol Spectr ; 10(4): e0151422, 2022 08 31.
Article in English | MEDLINE | ID: covidwho-1909617

ABSTRACT

Based on its predicted ability to affect transmissibility and pathogenesis, surveillance studies have highlighted the role of a specific mutation (P681R) in the S1/S2 furin cleavage site of the SARS-CoV-2 spike protein. Here we analyzed A.23.1, first identified in Uganda, as a P681R-containing virus several months prior to the emergence of B.1.617.2 (Delta variant). We performed assays using peptides mimicking the S1/S2 from A.23.1 and B.1.617 and observed significantly increased cleavability with furin compared to both an original B lineage (Wuhan-Hu1) and B.1.1.7 (Alpha variant). We also performed cell-cell fusion and functional infectivity assays using pseudotyped particles and observed an increase in activity for A.23.1 compared to an original B lineage spike. However, these changes in activity were not reproduced in the B lineage spike bearing only the P681R substitution. Our findings suggest that while A.23.1 has increased furin-mediated cleavage linked to the P681R substitution, this substitution needs to occur on the background of other spike protein changes to enable its functional consequences. IMPORTANCE During the course of the SARS-CoV-2 pandemic, viral variants have emerged that often contain notable mutations in the spike gene. Mutations that encode changes in the spike S1/S2 (furin) activation site have been considered especially impactful. The S1/S2 change from proline to arginine at position 681 (P681R) first emerged in the A.23.1 variant in Uganda, and subsequently occurred in the more widely transmitted Delta variant. We show that the A.23.1 spike is more readily activated by the host cell protease furin, but that this is not reproduced in an original SARS-CoV-2 spike containing the P681R mutation. Changes to the S1/S2 (furin) activation site play a role in SARS-CoV-2 infection and spread, but successful viruses combine these mutations with other less well identified changes, occurring as part of natural selection.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , COVID-19/virology , Furin/genetics , Furin/metabolism , Humans , Mutation , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Uganda
5.
Emerg Infect Dis ; 27(12): 3133-3136, 2021 12.
Article in English | MEDLINE | ID: covidwho-1496965

ABSTRACT

As the coronavirus pandemic continues, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequence data are required to inform vaccine efforts. We provide SARS-CoV-2 sequence data from South Sudan and document the dominance of SARS-CoV-2 lineage B.1.525 (Eta variant) during the country's second wave of infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Pandemics , South Sudan/epidemiology
6.
Virus Evol ; 7(2): veab067, 2021.
Article in English | MEDLINE | ID: covidwho-1412092

ABSTRACT

Defining the unique properties of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) protein sequences has potential to explain the range of Coronavirus Disease 2019 severity. To achieve this we compared proteins encoded by all Sarbecoviruses using profile Hidden Markov Model similarities to identify protein features unique to SARS-CoV-2. Consistent with previous reports, a small set of bat- and pangolin-derived Sarbecoviruses show the greatest similarity to SARS-CoV-2 but are unlikely to be the direct source of SARS-CoV-2. Three proteins (nsp3, spike, and orf9) showed regions differing between the bat Sarbecoviruses and SARS-CoV-2 and indicate virus protein features that might have evolved to support human infection and/or transmission. Spike analysis identified all regions of the protein that have tolerated change and revealed that the current SARS-CoV-2 variants of concern have sampled only a fraction (∼31 per cent) of the possible spike domain changes which have occurred historically in Sarbecovirus evolution. This result emphasises the evolvability of these coronaviruses and the potential for further change in virus replication and transmission properties over the coming years.

7.
Nat Microbiol ; 6(8): 1094-1101, 2021 08.
Article in English | MEDLINE | ID: covidwho-1294473

ABSTRACT

Here, we report SARS-CoV-2 genomic surveillance from March 2020 until January 2021 in Uganda, a landlocked East African country with a population of approximately 40 million people. We report 322 full SARS-CoV-2 genomes from 39,424 reported SARS-CoV-2 infections, thus representing 0.8% of the reported cases. Phylogenetic analyses of these sequences revealed the emergence of lineage A.23.1 from lineage A.23. Lineage A.23.1 represented 88% of the genomes observed in December 2020, then 100% of the genomes observed in January 2021. The A.23.1 lineage was also reported in 26 other countries. Although the precise changes in A.23.1 differ from those reported in the first three SARS-CoV-2 variants of concern (VOCs), the A.23.1 spike-protein-coding region has changes similar to VOCs including a change at position 613, a change in the furin cleavage site that extends the basic amino acid motif and multiple changes in the immunogenic N-terminal domain. In addition, the A.23.1 lineage has changes in non-spike proteins including nsp6, ORF8 and ORF9 that are also altered in other VOCs. The clinical impact of the A.23.1 variant is not yet clear and it has not been designated as a VOC. However, our findings of emergence and spread of this variant indicate that careful monitoring of this variant, together with assessment of the consequences of the spike protein changes for COVID-19 vaccine performance, are advisable.


Subject(s)
COVID-19/epidemiology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Motifs , Coronavirus Nucleocapsid Proteins/genetics , Genetic Variation/genetics , Genome, Viral/genetics , Humans , Phosphoproteins/genetics , Phylogeny , Uganda/epidemiology , Viral Proteins/genetics
8.
Microbiol Resour Announc ; 10(8)2021 Feb 25.
Article in English | MEDLINE | ID: covidwho-1105407

ABSTRACT

We report the genome sequence of a Minacovirus strain identified from a fecal sample from a farmed mink (Neovison vison) in The Netherlands that was tested negative for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using real-time PCR (RT-PCR). The viral genome sequence was obtained using agnostic deep sequencing.

9.
Emerg Infect Dis ; 26(10): 2411-2415, 2020 10.
Article in English | MEDLINE | ID: covidwho-625963

ABSTRACT

We established rapid local viral sequencing to document the genomic diversity of severe acute respiratory syndrome coronavirus 2 entering Uganda. Virus lineages closely followed the travel origins of infected persons. Our sequence data provide an important baseline for tracking any further transmission of the virus throughout the country and region.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/epidemiology , Coronavirus Infections/virology , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/virology , Air Travel , COVID-19 , Coronavirus Infections/diagnosis , Coronavirus Infections/prevention & control , Genetic Variation , Genome , Health Policy , Humans , Mass Screening , Motor Vehicles , Phylogeography , Pneumonia, Viral/diagnosis , Pneumonia, Viral/prevention & control , Quarantine , SARS-CoV-2 , Uganda/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL